Kalman Filter analysis

  • Durum: Pending
  • Ödül: $150
  • Alınan Girdiler: 1

Yarışma Özeti

I would like use the Kalman filter (not smoother) to estimate smooth values - in real-time - (for the position (Pt) and "velocity" (Vt, first derivative) of the attached time series.

This time series shows clear signs of mean reversion around zero, meaning that the acceleration (At, second derivative) should have a negative coefficient with Pt.

I would prefer a R-based solution, preferably using the FKF package.

I tried the following transition equation, unsuccessfully.

P(t+1)=(1 1 0.5 ) P(t) + Noise(P)
V(t+1)=(0 1 1 ) V(t) + Noise(V)
A(t+1)=(-Z 0 1) A(t) + Noise(A)

Additionally, I would like noises to be estimated (and not inputted).

As a newbie in Kalman filter, I’ve been struggling with this, but for someone who’s familiar with R and the Kalman filter, it should be an easy task.

Tavsiye Edilen Beceriler

Bu yarışmadan başlıca girdiler

Daha Fazla Girdi Görüntüle

Genel Açıklama Panosu

  • freelanmohan7
    freelanmohan7
    • 3 yıl önce

    Hi, Expert in Kalman Filtering here. I need few clarifications regarding this project. You have three state variables in your model and the attached file has info about only one state. What does the data represent? acceleration or position? What is Z in those equations. I guess the information you provided is incomplete.

    • 3 yıl önce

Yarışmalara nasıl başlanır

  • Yarışmanızı ilan edin

    Yarışmanızı İlan Edin Hızlı ve kolay

  • Tonlarca girdi alın

    Tonlarca Girdi Alın Bütün dünyadan

  • En iyi girdiyi seçin

    En iyi girdiyi seçin Dosyaları indirin - Kolay!

Şimdi bir Yarışma İlan Edin ya da Bugün Bize Katılın!